Energy Demand Management of Electric Vehicles
نویسنده
چکیده
The aim of this thesis is to investigate novel recharging schemes for energy demand management (DM) of electric vehicles (EVs). While there has been a lot of work highlighting the importance of energy DM of EVs, most of the reported works do not expand on suggesting how such a DM system may be implemented. In this thesis the focus is on two aspects of DM system implementation. At the instantaneous control time scale, an alternative mechanism for frequency regulation with the aim of neutralising sudden changes in output power of electric generators is presented. At the recharge planning time scale, the aim is to avoid congestion and undesirable voltage drops in the distribution system, and a novel approach is presented that can improve voltage profiles. The problem of considering both voltage congestion and frequency regulation in a composite DM framework is also addressed. At the instantaneous control time scale, a novel distributed recharging rate controller is presented that is based on non-linear control and that yields a real time and distributed solution. This controller minimises communication overheads and allows EVs to join and leave at arbitrary times. From the perspective of recharging rate allocation, the controller achieves a Pareto efficient allocation which is also proportionally fair. The proposed controller is then applied to a system with a single, isolated, and unregulated synchronous machine and it is shown that the frequency can be used as proxy to the imbalance between produced and consumed electric power and hence communication overhead can be eliminated in such cases. A protocol is also discussed that can modify the controller and can implement the modified controller in a multi-machine system. Simulation is used to show the frequency regulation and fairness of recharging rates of EVs when the protocol and the modified controller are used. Subsequently, the integration of the recharging rate controller with the legacy protection system is also discussed. At the recharge planning time scale, the problem of congestion in the distribution system is addressed. Most of published literature on distribution system voltage issues deals with control of various network elements, for instance, on-load tap changers or banks of shunt capacitors on the distribution feeders. In this thesis, a complementary approach 7 8 is presented that can also improve voltage profile by scheduling EV load in such a manner that undesirable voltage drops are avoided or their severity is diminished. In this context, a novel approach is presented for recharging EVs in the same geographic neighbourhood that share the same secondary circuits when recharging. The approach is based on a numerical method called Smoothed Particle Hydrodynamics (SPH) that has been previously used by other researchers to solve the equations of fluid dynamics. The characteristics of the method used for the proposed approach as well as its performance in term of improvement in the reduction of voltage drops and its adaptation to elastic and non-elastic loads is highlighted via simulation. Finally, the approach is extended to also provide a frequency control reserve service.
منابع مشابه
Energy Management in Microgrids Containing Electric Vehicles and Renewable Energy Sources Considering Demand Response
Microgrid and smart electrical grids are among the new concepts in power systems that support new technologies within themselves. Electric cars are some advanced technologies that their optimized use can increase grid efficiency. The modern electric cars sometimes, through the necessary infrastructure and proper management, can serve as an energy source to supply grid loads. This study was cond...
متن کاملSmart Charge Management of Electric Vehicles in the Distribution Network in the Presence of Demand Response Program
Charging electric vehicles in the distribution network is one of the most basic solutions for technical and economic management of energy distribution. In many traditional charging methods, the condition of fully charging cars when leaving the parking lot has always been a problem. But in this article, each car is intelligently charged only based on the amount of energy required to travel its d...
متن کاملA Smart Charging Method for Optimum Electric Vehicles Integration in the Distribution System in Presence of Demand Response Program
Electric vehicle charging in the distribution network is one of the common techniques for technical and economic management of energy distribution, which, if implemented properly, will bring several benefits such as reducing network peak load, charging costs reduction, loss minimization, and etc. In most traditional charging methods, the constraints of fully charging electric vehicles at depart...
متن کاملSecurity Constrained Unit Commitment in the Simultaneous Presence of Demand Response Sources and Electric Vehicles
Due to the ever-growing load, especially peak load, the increase in the capacity of plants is inevitable for the response to this growth. Peak load causes increases in customer costs and vast investments in generating and transmission parts. Therefore, restructuring in the electrical industry, competition in the electrical market and Demand Response Programs (DRPs) are of special importance in ...
متن کاملIntegrated Scheduling of Electric Vehicles and Demand Response Programs in a Smart Microgrid
Microgrid (MG) is one of the important blocks in the future smart distribution systems. The scheduling pattern of MGs affects distribution system operation. Also, the optimal scheduling of MGs will be result in reliable and economical operation of distribution system. In this paper, an operational planning model of a MG which considers multiple demand response (DR) programs is proposed. In the ...
متن کاملInvestigating carbon emission abatement long-term plan with the aim of energy system modeling; case study of Iran
Increasing electric vehicles usage, as a promising solution for environmental issues, might have unexpected implications, since it entails some changes in different sectors and scales in energy system. In this respect, this research aims at investigating the long-term impacts of electric vehicles deployment on Iran's energy system. Accordingly, Iran's energy system was analyzed by LEAP model in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014